Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

2-[Bis(pyrazol-1-yl)methyl]-4-tert-butyl-6-(phenylsulfanyl)phenol

Isabelle Sylvestre, Colin A. Kilner and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England Correspondence e-mail: m.a.halcrow@leeds.ac.uk

Received 27 January 2005
Accepted 9 March 2005
Online 23 April 2005
The title compound, $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OS}$, contains a highly asymmetric bifurcated intramolecular hydrogen bond between the hydroxy group and two pyrazole N atoms. The compound associates into centrosymmetric dimers in the crystal through two unique $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, which are in turn linked into a $(6,3)$-network through an additional intermolecular C $\mathrm{H} \cdots \mathrm{N}$ hydrogen bond.

Comment

Heteroleptic tripodal di- and tripyrazol-1-yl derivatives (socalled 'heteroscorpionates') are finding increasing use as ligands to transition metals (Trofimenko, 1999; Otero, Fernández-Baeza, Antiñolo, Tejeda \& Lara-Sánchez, 2004). Bis(pyrazolyl)methane ligands bearing alkoxy, phenoxy and carboxylate functions have been of particular interest as models for mixed-donor metal biosites (see, for example, Beck et al., 2003; Hammes et al., 2003, 2004; Hoffman et al., 2004) and as protecting groups in organometallic compounds (see, for example, Caballero et al., 2004; Otero et al., 2003; Otero, Fernández-Baeza, Antiñolo, Tejeda, Lara-Sánchez et al., 2004). We have prepared the title compound, (I), as part of our continuing investigation of chemistry related to the copper enzyme galactose oxidase (Halcrow et al., 1999; Liu et al., 2002; Sylvestre et al., 2005), which contains a biologically unique

(I)
ortho-(alkylsulfanyl)tyrosyl free radical in its active site (Whittaker, 2003). Three other 2-[bis(pyrazol-1-yl)methyl]phenol derivatives have also been crystallographically characterized by Carrano's group (Higgs \& Carrano, 1997, 2002; Shirin \& Carrano, 2004).

Compound (I) (Fig. 1) was prepared from 5-tert-butyl-2-hydroxy-3-(phenylsulfanyl)benzaldehyde (Wang \& Stack, 1996) and di(pyrazol-1-yl) ketone (Byers et al., 1990) by Carrano's procedure (Higgs \& Carrano, 1997), and crystallized from a $1: 1$ diethyl ether/pentane mixture. All bond lengths and angles within the molecule lie within their usual ranges. There is a bifurcated intramolecular hydrogen bond between hydroxy group O1 and pyrazole atoms N 27 and N 28 , although the latter interaction clearly dominates. Interestingly, this type of hydrogen bond is only observed in one of the other three known 2-[bis(pyrazol-1-yl)methyl]phenol crystal structures (Higgs \& Carrano, 2002), despite the apparent proximity of these groups in this class of molecule. As is usual in diaryl sulfides, the two aryl groups $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 1 P-\mathrm{C} 6 P$ are close to being perpendicular, the dihedral angle between their planes being $78.57(6)^{\circ}$. This configuration does not give rise to a significant intramolecular edge-to-face interaction between these two rings, however, since atom H5 lies $3.00 \AA$ from the centroid of the $\mathrm{C} 1 P-\mathrm{C} 6 P$ ring. This is slightly longer than the sum of the van der Waals radii for a H atom (1.2 \AA) and an aromatic ring (1.7 Å; Pauling, 1960).

Neighbouring molecules related by $(-x, 1-y,-z)$ associate into centrosymmetric dimers through two weak intermolecular interactions involving phenyl group $\mathrm{C} 1 P-\mathrm{C} 6 P$ (Fig. 2). The first is an intermolecular hydrogen bond, viz. C5P-H5P \cdots N27 ${ }^{\mathrm{i}}$ [symmetry code: (i) $-x, 1-y,-z$; Table 1]. This contact is probably best considered as a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, since the donor phenyl group C5P-H5P and acceptor pyrazole group $\mathrm{N} 27^{\mathrm{i}}-\mathrm{C} 31^{\mathrm{i}}$ are nearly perpendicular, with a dihedral angle of 80.57 (7) ${ }^{\circ}$. The second is another C $\mathrm{H} \cdots \pi$ interaction between atom $\mathrm{H} 6 P$ and the $\mathrm{C} 1^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ ring, with a $\mathrm{H} 6 P \cdots \mathrm{C} 4^{\mathrm{i}}$ distance of $2.87 \AA$ and a $\mathrm{C} 6 P-\mathrm{H} 6 P \cdots \mathrm{C} 4^{\mathrm{i}}$ angle of 159° [as before, the dihedral angle between the planes

Figure 1
A view of the asymmetric unit in the crystal structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme employed. H atoms have arbitrary radii and specific H atoms referred to in the Comment are labelled.

Figure 2
The weak association of molecules of (I) into centrosymmetric dimers through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. One of the two molecules has been deemphasized for clarity. The view is approximately perpendicular to the (011) crystallographic plane, with the a axis horizontal. [Symmetry code: (i) $-x, 1-y,-z$.]
of the aryl groups $\mathrm{C} 1 P-\mathrm{C} 6 P$ and $\mathrm{C}^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ is 78.57 (6) ${ }^{\circ}$. The $\mathrm{H} 5 P \cdots \mathrm{~N} 27^{\mathrm{i}}$ and $\mathrm{H} 6 P \cdots \mathrm{C} 4^{\mathrm{i}}$ distances are both $0.1-0.2 \AA$ shorter than the sum of the van der Waals radii of a H atom (1.2 A) and an aromatic ring (1.7 £; Pauling, 1960). Adjacent dimers in the crystal structure associate into sheets through a $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, viz. $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 23^{\text {ii }}$ [symmetry code: (ii) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$]. In contrast to the C5P$\mathrm{H} 5 P \cdots \mathrm{~N} 27^{\mathrm{i}}$ interaction, atom H3 is clearly positioned to interact with the lone pair of the pyridine-type atom $\mathrm{N} 23^{\mathrm{ii}}$. The overall effect of these interactions is to link adjacent molecules in the crystal structure into puckered $(6,3)$ herring-bone sheets running parallel to the (102) crystal plane.

Experimental

A mixture of 5-tert-butyl-2-hydroxy-3-(phenylsulfanyl)benzaldehyde $(1.5 \mathrm{~g}, 5.2 \mathrm{mmol})$, di(pyrazol-1-yl) ketone ($1.3 \mathrm{~g}, 5.2 \mathrm{mmol}$) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(12 \mathrm{mg}, 0.05 \mathrm{mmol})$ was heated under N_{2} to 373 K until evolution of CO_{2} ceased. The resulting pink solid was cooled, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with water and brine. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to leave a yellow oil. Crystallization of the crude product from a 1:1 diethyl ether/pentane solvent mixture afforded yellow crystals (yield 0.74 g , 35%). Analysis found: C $68.3, \mathrm{H} 6.0, \mathrm{~N} 13.8 \%$; calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C} 68.2, \mathrm{H} 6.2, \mathrm{~N} 14.0 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): ~ \delta 1.18$ $\left[s, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 6.31$ (pseudo- $\left.t, 2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz} \mathrm{H} 4\right), 7.01(d, 2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph} \mathrm{H} 3), 7.14-7.27\left(m, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.46(d, 2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \mathrm{H} 5), 7.58$ and 7.61 (both $d, 2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz} \mathrm{H} 3$ and Pz H5), $7.71(s, 1 \mathrm{H}, \mathrm{CH})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OS} \\
& M_{r}=404.52 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=13.6486(2) \AA \\
& b=9.3529(1) \AA \AA \\
& c=17.8913(3) \AA \\
& \beta=109.21(1)^{\circ} \\
& V=2156.67(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Nonius KappaCCD area-detector diffractometer
ω and φ scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.594, T_{\text {max }}=0.929$
43089 measured reflections
4921 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.063 P)^{2}\right. \\
& \quad+0.69 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.129$
$S=1.05$
4921 reflections
263 parameters

H -atom parameters constrained
Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3 $\cdots \mathrm{N} 23^{\mathrm{ii}}$	0.95	2.62	$3.4682(19)$	149
O1-H1 27	0.84	2.60	$3.2292(17)$	133
O1-H1 $\cdots \mathrm{N} 28$	0.84	1.87	$2.6846(18)$	162
C5P-H5P $\cdots \mathrm{N} 27^{\mathrm{i}}$	0.95	2.81	$3.750(2)$	169

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were placed in calculated positions and refined using a riding model $\left[\mathrm{C}-\mathrm{H}(\right.$ aryl $)=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ; \mathrm{C}-$ $\mathrm{H}($ tertiary alkyl $)=1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ; \mathrm{C}-\mathrm{H}($ methyl $)=$ $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$; and $\mathrm{O}-\mathrm{H}=0.84 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $\left.1.2 U_{\mathrm{eq}}(\mathrm{O})\right]$.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

The authors acknowledge the EPSRC and the University of Leeds for funding.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1606). Services for accessing these data are described at the back of the journal.

References

Beck, A., Barth, A., Hübner, E. \& Burzlaff, N. (2003). Inorg. Chem. 42, 71827188.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Byers, P. K., Canty, A. J. \& Honeyman, R. T. (1990). J. Organomet. Chem. 385, 417-427.
Caballero, A., Carrión, M. C., Espino, G., Jalón, F. A. \& Manzano, B. R. (2004). Polyhedron, 23, 361-371.
Halcrow, M. A., Chia, L. M. L., Liu, X., McInnes, E. J. L., Yellowlees, L. J., Mabbs, F. E., Scowen, I. J., McPartlin, M. \& Davies, J. E. (1999). J. Chem. Soc. Dalton Trans. pp. 1753-1762.
Hammes, B. S., Chohan, B. S., Hoffman, J. T., Einwaechter, S. \& Carrano, C. J. (2004). Inorg. Chem. 43, 7800-7806.

Hammes, B. S., Kieber-Emmons, M. T., Letizia, J. A., Shirin, Z., Carrano, C. J., Zakharov, L. N. \& Rheingold, A. L. (2003). Inorg. Chim. Acta, 346, 227238.

Higgs, T. C. \& Carrano, C. J. (1997). Inorg. Chem. 36, 291-297.
Higgs, T. C. \& Carrano, C. J. (2002). Eur. J. Org. Chem. pp. 3632-3645.

organic compounds

Hoffman, J. T., Einwaechter, S., Chohan, B. S., Basu, P. \& Carrano, C. J. (2004). Inorg. Chem. 43, 7573-7575
Liu, X., Barrett, S. A., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2002). Tetrahedron, 58, 603-611.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J. \& Lara-Sánchez, A. (2004). Dalton Trans, pp. 1499-1510.

Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L., Exposito, M. T. \& Rodríguez, A. M. (2003). Dalton Trans. pp. 1614-1619.
Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., Lara-Sánchez, A., Sánchez-Barba, L. \& Rodríguez, A. M. (2004). Dalton Trans. pp. 39633969.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257-264. Ithaca, NY, USA: Cornell University Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shirin, Z. \& Carrano, C. J. (2004). Polyhedron, 23, 239-244.
Sylvestre, I., Wolowska, J., McInnes, E. J. L., Kilner, C. A. \& Halcrow, M. A. (2005). Inorg. Chim. Acta, 358, 1337-1341.

Trofimenko, S. (1999). Scorpionates - The Coordination Chemistry of Polypyrazolylborate Ligands, pp. 155-182. London: Imperial College Press
Wang, Y. \& Stack, T. D. P. (1996). J. Am. Chem. Soc. 118, 13097-13098.
Whittaker, J. W. (2003). Chem. Rev. 103, 2347-2364.

